Марс, с его огромными территориями, уникальными геологическими особенностями и совсем неприветливым климатом, может быть освоен только в процессе совместной работы людей и машин. Полуавтономные машины будут необходимы для выполнения чрезмерно утомительной и опасной для людей работы: аэрофотосъемка и разведка, создание складов и обеспечение защиты в длительных полевых поездках, а также перевозка огромного количества геологических образцов. Поэтому сейчас ведутся работы по созданию таких марсоходов, которые могли бы стать для исследователей своеобразным домом, необходимым для проведения поисковых работ в течение нескольких дней. Несмотря на то что марсианская экспедиция может обойтись в астрономическую сумму, необходимо помнить, что подобные проекты предусматривают разработку новейших технологий, находящих широкое применение, в том числе и на Земле.

 

     Прежде чем ставить вопрос об освоении и заселении новой планеты, необходимо проделать огромное количество научных исследований. Ученым предстоит выяснить, были ли прежде у Марса плотная атмосфера и океаны, остался ли где-то такой необходимый компонент существования, как вода, какие климатические изменения испытал он за свою долгую геологическую историю, каковы причины этих изменений и насколько устойчив климат планеты сегодня. И еще - имела ли на Марсе место химическая эволюция, которая могла бы привести к формированию органических молекул, то есть жизни, и можно ли ее следы обнаружить где-нибудь сегодня.
     Отправка даже одной экспедиции на Марс связана с огромными финансовыми затратами, которые, по некоторым оценкам, могут составить 100 млрд. долларов, и огромным риском для экипажа, поэтому подготовка к столь серьезному шагу должна быть не только всесторонней, но и требующей совместных усилий мирового сообщества.

     Американские специалисты считают, что экспедиция должна провести на Марсе 500 дней, то есть общая ее продолжительность может составить почти три года. Сам же план получил впечатляющее название «1 000 дней». В российских же проектах, более осторожных в связи с огромным опытом работы на орбите, пребывание космонавтов на планете едва ли превысит несколько дней. Согласно предлагаемому Россией плану марсианской пилотируемой экспедиции элементы корабля для сборки в единый комплекс должны быть прежде доставлены на околоземную орбиту. 3атем этот комплекс с помощью двигательных установок должен выйти на межпланетную траекторию и в течение нескольких месяцев  лететь к Марсу. На подлете к Марсу комплекс затормозится и выйдет на околомарсианскую орбиту. Затем от основной части комплекса отделится специальный посадочный корабль, в котором экипаж экспедиции (или его часть спустится на поверхность Марса. А после выполнения работы экипаж на взлетном модуле, находящемся в составе посадочного корабля, возвратится на комплекс и экспедиция возьмет курс к Земле. Выбор из возможных вариантов создания комплекса делается с учетом основных критериев: обеспечение безопасности экипажа, стоимость, исследовательские возможности экспедиции, перспективность уже разработанных технических решений применительно к другим проектам, а также обеспечение высокой вероятности благополучного возвращения экипажа на Землю. Особое внимание уделяется жилому модулю, включающему в себя радиационное убежище с каютами для членов экипажа, средства жизнеобеспечения, командный пост, аппаратуру управления полетом, солнечные батареи и шлюзовую камеру. Наиболее эффективным двигателем для использования на марсианском корабле, по мнению российских специалистов, является электрореактивный двигатель.

     В американском проекте для уменьшения веса космического корабля используется идея Роберта Зубрина, предусматривающая производство топлива на Марсе непосредственно из местных ресурсов. Для этого на Красную планету необходимо доставить водород и ядерную силовую установку, которая обеспечивала бы электричеством и жилой комплекс, и завод по производству метана - его планируют получить из водорода, привезенного с Земли, и углекислого газа, взятого из марсианской атмосферы. Используя химическую реакцию Сабатье, из углекислого газа и водорода получают кислород и метан. Шесть тонн водорода, доставленного с 3емли, позволят в течение 6-8 месяцев произвести 84 т жидкого кислорода и 24 т метана, последнего должно быть достаточно и для заправки модуля, предназначенного для возвращения космонавтов, и для обеспечения горючим марсохода, который останется работать на планете. Причем, по замыслу Роберта Зубрина, горючее должно быть готово еще до прилета землян на Марс. Таким образом, на Марс ежегодно придется посылать 2 корабля - один с космонавтами, другой - с комплексом для производства горючего для следующей экспедиции (их совместная стоимость - около 50 млрд. долларов). Российские ученые считают эту идею в перспективе плодотворной, но убеждены, что в первой пилотируемой экспедиции ее использование преждевременно. Российские специалисты предлагают также не посылать на Марс заводы по производству химических элементов горючего, а напрямую использовать углекислый газ, взятый из марсианской атмосферы, в качестве окислителя порошкообразных металлов. Наиболее же перспективным горючим для двигателя, по их мнению, является магний, легко воспламеняющийся в среде из углекислого газа. В любом случае первая марсианская миссия стартует только тогда, когда все необходимое для ее осуществления будет находиться в полной готовности. Нам же остается только ждать.

     Что касается долгосрочных планов «оживления» Марса, то они направлены на разработку концепции, которая позволила бы с помощью растений уменьшить в его атмосфере уровень углекислого газа и произвести необходимое количество кислорода. Для создания атмосферы на поверхности Красной планеты предлагается построить фабрики, производящие искусственные парниковые газы. Роберт Зубрин и Крис Маккей предполагают, что это должен быть перфлюорометан (CF4). В своей недавно изданной книге «Вступление в космос» Зубрин утверждает, что если производить и выпускать этот газ  на Марсе с той же скоростью, с которой сегодня на Земле производятся подобные газы (приблизительно 1 000 т в час), то за несколько десятилетий средняя температура на всей Красной планете могла бы увеличиться на 10°С. Такое потепление вызвало бы появление большого количества углекислого газа, являющегося парниковым, который в дальнейшем мог бы обогревать эту планету.

    Еще теплее сделать ее могло бы и увеличившееся содержание в атмосфере водяного пара. Усилить же эти эффекты можно было бы в результате использования метаногенов и создающих аммиак бактерий, так как и метан, и аммиак также относятся к разряду парниковых газов. Общим результатом подобной программы могут явиться создание такой атмосферы на Марсе, которая будет приемлема с точки зрения давления и температуры, и появление на его поверхности жидкой воды в течение 50 лет от начала эксперимента. И хотя эта искусственно созданная атмосфера не может считаться подходящей для того, чтобы человек свободно дышал, она могла бы существенно поддержать зерновые культуры и дала бы возможность астронавтам прогyливаться по поверхности в кислородных масках. По крайней мере, до тех пор, пока не создадут ту атмосферу, которая будет полностью пригодна для дыхания. Несмотря на то, что превращение Марса в планету, подобную Земле, не будет нарушением Соглашения по Космосу (1967 год), запрещающего только «вредное», невыгодное использование космического пространства, уже сейчас как со стороны некоторых ученых, так и со стороны защитников окружающей среды звучат весьма энергичные возражения. Одни считают, что недопустимо приступать к освоению Марса, не изучив подробнейшим образом его геологический состав и климат, другие утверждают, что вторжение человека на эту планету может ryбительным образом сказаться на уникальной марсианской среде, нарушив ее первозданность. Существует также и третья группа людей, вообще видящих в человеке источник всех бед: он уже непозволительно засорил не только собственную планету, но и околоземное пространство, и та же печальная участь может постичь и Марс в том случае, если он все-таки станет форпостом человеческой цивилизации.
    Современная космонавтика уже располагает опытом длительного пребывания человека в космосе. Так, врач Валерий Поляков 7 лет назад провел на околоземной орбите почти полтора года. Этого времени вполне достаточно, чтобы долететь до Марса и вернуться обратно. Однако принципиальное отличие марсианской экспедиции от полетов на орбитальной станции заключается в том, что у космонавтов времени на адаптацию не будет, им надо начинать работать на чужой планете сразу же после перелета, а потому к моменту подлета к Марсу они должны быть в очень хорошей физической форме.      К тому же если в предыдущих полетах от Земли их отделяли всего несколько сот километров, то для марсианской экспедиции, которой предстоит преодолеть десятки, а то и сотни миллионов километров, потребуется своеобразный «Ноев ковчег» - космический корабль, существующий полностью в автономном режиме.

      Для подобного полета необходимо создание системы жизнеобеспечения так называемого замкнутого цикла. И если сейчас на орбиту с помощью грузовых кораблей доставляется необходимый запас воды и продуктов питания, то в длительном полете кораблю, вышедшему за пределы околоземной орбиты, придется рассчитывать только на собственные ресурсы. В первой экспедиции к Марсу возможно использование принципа той системы жизнеобеспечения, которая зарекомендовала себя на станции «Мир» и МКС в течение продолжительного срока эксплуатации, но она несомненно нуждается в усовершенствовании. Эта система основана на принципе физико-химической регенерации воды и получения кислорода методом электролиза.

    Серьезной опасностью, с которой космонавты столкнутся во время межпланетного перелета и пребывания на Марсе, являются ионизирующие излучения, которые порождают Солнце и Галактика. Землян, от губительного воздействия радиации, защищают земные атмосфера и магнитное поле, но в открытом космосе человек уже не может использовать эти преимущества. Поэтому учеными проводятся работы по изучению возможной радиационной обстановки в межпланетном пространстве, в том числе исследуются энергии и спектры галактических космических и солнечных лучей, равно как и та опасность, которую они могут представлять для здоровья человека. Входящие в состав лучей тяжелые элементы, например ядра железа, обладают большой проникающей способностью и могут выводить из строя живые клетки. Значительная опасность возникает в том случае, если они «прошьют» зрительный нерв или нервные клетки головного мозга. Отдаленными последствиями радиации могут стать: возникновение катаракты, изменение генетического аппарата клеток организма и возникновение раковых заболеваний. Разработанные на сегодняшний день медицинские препараты - радиопротекторы неспособны полностью решить проблему защиты человека от воздействия радиации, поэтому для марсианского корабля необходимо создание надежного радиационного убежища. Эту задачу может выполнять защищенная металлическими стенками большой толщины каюта для отдыха космонавтов, позволяющая снизить дозу космического излучения, в то же время не менее эффективным защитным средством могут служить резервные запасы воды и масса оборудования космического корабля.

      Другая опасность для здоровья человека связана с тем, что в космосе отсутствует гравитация, на Марсе же она составляет всего 38% от земной. Как только человек попадает в космос, его организм начинает перестраиваться. Сначала из-за перегрузок при преодолении земной гравитации происходит нарушение вестибулярного аппарата, что может привести к возникновению определенных иллюзий, вследствие которых совершаются ошибки в оценке расстояний между предметами, а также в управлении кораблем. Происходит это потому, что механизм кровообращения нарушается, кровь приливает к голове и для адаптации требуется некоторое время. Однако подобные последствия невесомости проходят достаточно быстро. В условиях нулевой гравитации перестраивается и гормональная система, например изменяется концентрация выработки гормонов, связанных с водносолевым обменом, так как сердце переполняется кровью и не в состоянии сразу переработать большое ее количество. В организме начинают выделяться гормоны, способствующие удалению из него этой, как бы лишней, крови, и он через почки начинает терять воду, что ведет к частичному обезвоживанию организма. Для того чтобы справиться с этими негативными последствиями, космонавтам необходимо выпивать не менее 3 литров жидкости в день. И все равно целый ряд «эффектов невесомости» не снимается, что крайне настораживает врачей. Из-за потери минералов, в частности кальция и калия, происходит разрушение костной ткани и развивается мышечная атрофия. При этом больше всего кальция теряют кости ног и таза, меньше-ребра и кости рук, а вот в костях черепа его количество даже увеличивается. Иногда процесс потери минералов продолжается и на Земле, восстановление же до нормы после 8 месяцев пребывания в космосе может занимать около двух лет, а иногда и больше. Поэтому при выборе команды важным фактором должен стать генетический отбор, так как организмы разных людей в разной степени подвержены остеопорозу, а это заложено именно на генетическом уровне. Кстати говоря, на станции «Мир» использовалось искусственное ультрафиолетовое облучение кожных покровов космонавтов для стимуляции выработки витамина Д, способствующего уменьшению деминерализации костей в длительных полетах. Подобная система мер профилактики может функцио-нировать и на борту пилотируемого марсианского корабля. В отличие от костной мышечная масса в условиях нормальной гравитации способна довольно быстро восстанавливаться, хотя при длительной невесомости ее потери могут доходить до 25%. Для того чтобы предотвратить столь значительные потери, ученые разрабатывают специальное питание и лекарственные препараты. В первую очередь в невесомости страдают так называемые антигравитационные тонические мышцы (мышцы ног и спины), в области рук мышечная масса почти не теряется, так как на них в космосе происходит увеличение нагрузки. Важным моментом после длительного перелета являются сохранение работоспособности и проблема перехода от нулевой гравитации к марсианской, что также может вызвать в организме космонавтов стресс. И хотя на Марсе гравитация почти вдвое меньше земной, к ней все равно необходимо подготовиться заранее. Одним из решений может быть создание на корабле в течение последних 2 месяцев полета гравитации, подобной марсианской. Это позволит космонавтам постепенно адаптироваться к новым условиям и тем самым сохранить работоспособность при посадке.

     Многие психологи придерживаются того мнения, что едва ли не самой сложной проблемой в столь длительном полете является психологическое состояние и совместимость членов экипажа. Когда группа людей оказывается в ограниченном пространстве, психологи в ряде случаев отмечают среди них проявление агрессивности, а в результате могут возникать серьезные конфликты, поэтому важным критерием отбора космонавтов должна стать стрессоустойчивость, а также умение принимать в критических ситуациях быстрые, правильные решения. Если экспедиция будет международной, то в ее состав войдут представители разных культур, религий, образа жизни и философии, значит, нужно заранее просчитать возможные конфликтные ситуации, чтобы постараться их избежать. Для того чтобы космонавты не чувствовали себя оторванными от Земли, предполагается, что на космическом корабле необходимо воссоздать иллюзию смены времен года, пения птиц или привычных для землян запахов.

Поскольку людям, находящимся в космосе, может понадобиться медицинская помощь, которую нельзя будет получать с Земли, то в состав команды обязательно должен входить профессиональный врач. Ему будут помогать автоматизированные диагностические системы, выдающие предварительный анализ. Сейчас по всему миру разрабатываются новейшие технологии, способные облегчить работу бортового врача. Американские ученые, например, разрабатывают наборы специальных хирургических инструментов, которые сначала планируется испытать в условиях невесомости на МКС, а впоследствии, возможно, использование подобных инструментов и в марсианской экспедиции. Несмотря на то что, по предварительным расчетам, связь с Марсом будет осуществляться с задержкой до 20 минут, существенную поддержку врачу окажут телемедицинские технологии, благодаря которым на Землю можно будет передавать медицинские показатели, для установления диагностики и получения необходимых консультаций.
В открытом космосе отсутствует и привычное для нас магнитное поле, на Марсе же оно не только в 1 000 раз меньше земного, но и не имеет того глобального характера, который существует на Земле. Большая часть поверхности этой планеты, на которой имеются только точечные магнитные поля, размагничена. Как показывают исследования, отсутствие магнитного поля неблагоприятно сказывается на состоянии вегетативнонервной системы человека и, соответственно, снижает его ра6отоспособность. Совершенно очевидно, что как на борту корабля, так и в базовом марсианском лагере будет необходимо создавать искусственное магнитное поле.
Работа в космосе предусматривает максимальную концентрацию внимания для работы со сложной аппаратурой, а поскольку 24-часовой цикл человеческой жизнедеятельности в космосе исчезает, то это обстоятельство ведет к бессоннице. А ведь во время сна снижается активность пищеварительной системы, замедляется процесс обмена веществ и активизируются восстановительные процессы в клетках. Если же суточный ритм сбивается, то у космонавтов может развиться такое заболевание, как десинхроноз. Иногда при чрезмерно большой нагрузке у людей, работающих за бортом корабля, может возникать декомпрессионная болезнь, которой на Земле страдают водолазы. Она возникает, когда в кровь выделяется повышенное количество углекислоты, которая может забирать на себя остатки азота, содержащегося в крови. В результате возникают так называемые азотные пузырьки и происходит нарушение микроциркуляции - закупорка мелких сосудов. В отличие от мужского женский организм более подвержен декомпрессионной болезни из-за большего количества жира, в котором и содержится растворенный азот. К тому же женщины более чувствительны к радиации, да и вообще, влияние космоса на их организм гораздо меньше изучено. А потому российские специалисты считают участие женщин в первой марсианской экспедиции преждевременным.

Процесс отбора кандидатов стартует в первой половине 2013 года. Прислать заявку может любой житель планеты возрастом старше 18 лет (верхней планки по возрасту не предусмотрено). В качестве основных критериев, на которые будут обращать внимание организаторы,указаны: бодрость духа, целеустремлённость, умение приспосабливаться к любым условиям, любопытство, способность доверять людям, хорошее чувство юмора и любовь к творчеству.

От добровольцев не требуется каких-либо специальных профессиональных навыков. У них будет как минимум восемь лет для подготовки, в ходе которой они пройдут обучение всему необходимому от геологии до медицины.

 

Первая экспедиция может быть отправлена к Марсу уже в 2030 г. Доставить людей на Красную планету технически возможно уже сегодня. Гораздо труднее вернуть их оттуда. Для этого придётся либо везти с собой двойной запас топлива, либо ждать, когда его доставит второй, транспортный, корабль, либо самим изготовить его на месте из имеющихся на Марсе ресурсов...

Всё это обойдётся весьма и весьма дорого. А потому сторонники колонизации предлагают участникам экспедиции сразу «брать билет в один конец». И сразу по прилёту начинать обосновываться обстоятельно. Поначалу колонисты будут жить в самом корабле. Но постепенно они выстроят на Марсе целый город со своей инфраструктурой и сельским хозяйством, полагает профессор Маккарди. «Мы - странники, мы всегда ищем новые земли. Земля уже освоена от Северного полюса до Южного. Теперь пора искать новую землю обетованную», - говорит он. Кроме финансовых соображений, авторы проекта приводят ещё и такое. Рано или поздно нам всё равно придётся расселяться по Солнечной системе – Земля окажется уже не в состоянии прокормить всё растущее человечество.